lunes, 18 de abril de 2011

Social groups and chaotic state transitions: homage to Walter J. Freeman III


In this article, we pay homage to one of the most prominent neuroscientists ever: Walter Jackson Freeman III. He has designed a perspective called Nonlinear Neurodynamics of the brain that, perhaps is the most advanced and veridical approximation to the study of the brain dynamics. More interesting for this blog is the connection between his neurophysiological discoveries and its applications to the social dynamics o formation of social groups (see his book, "Societies of Brains", 1995). According to Freeman (1995), the cerebral cortex switches abruptly from one basin of attraction to another, each transition involving learning. Therefore, each brain creates its own trajectory which is not directly accessible by any other brain. The question is: how can several brains be shaped by learning so as to form cooperative groups for survival and reproduction? Large numbers of neurons follow chaotics dynamics expressing global state transitions (sleep to waking, etc.) and one class of state transitions in brains provides for the formation of social groups. Brains process meaning. But this intentional mechanism implies, in a certain sense, the isolation of each brain. With respect to energy and information each brain is an open system but with respect to meaning it is a closed system. However Nature has evolved powerful methods for the social learning and social cooperation. The discovery of the means for inducing these forms of learning can be understood as a chaotic state transition in brain dynamics like, for instance, the rapid adaptation of young adults for their new roles in state transitions from child to adulthood.

No hay comentarios: